845 research outputs found

    Probing the local dynamics of periodic orbits by the generalized alignment index (GALI) method

    Full text link
    As originally formulated, the Generalized Alignment Index (GALI) method of chaos detection has so far been applied to distinguish quasiperiodic from chaotic motion in conservative nonlinear dynamical systems. In this paper we extend its realm of applicability by using it to investigate the local dynamics of periodic orbits. We show theoretically and verify numerically that for stable periodic orbits the GALIs tend to zero following particular power laws for Hamiltonian flows, while they fluctuate around non-zero values for symplectic maps. By comparison, the GALIs of unstable periodic orbits tend exponentially to zero, both for flows and maps. We also apply the GALIs for investigating the dynamics in the neighborhood of periodic orbits, and show that for chaotic solutions influenced by the homoclinic tangle of unstable periodic orbits, the GALIs can exhibit a remarkable oscillatory behavior during which their amplitudes change by many orders of magnitude. Finally, we use the GALI method to elucidate further the connection between the dynamics of Hamiltonian flows and symplectic maps. In particular, we show that, using for the computation of GALIs the components of deviation vectors orthogonal to the direction of motion, the indices of stable periodic orbits behave for flows as they do for maps.Comment: 17 pages, 9 figures (accepted for publication in Int. J. of Bifurcation and Chaos

    `The dragon breathes smoke': cigarette counterfeiting in the People's Republic of China

    Get PDF
    This article aims at providing an account of the social organization of the cigarette counterfeiting business in the People's Republic of China—a business that has been feeding the cigarette black markets around the globe. Specifically, we aim to exhibit the scale and nature of cigarette counterfeiting in mainland China, describe the practices and actors in the different phases of the trade, and examine the role of corruption and violence in the particular business. We argue that cigarette counterfeiting is one of the side effects of China's reform and ‘opening up’ policy, and a feature of the country's economic development process

    Nonlinear dynamics and onset of chaos in a physical model of a damper pressure relief valve

    Full text link
    Hydraulic valves, for the purpose of targeted pressure relief and damping, are a ubiquitous part of modern suspension systems. This paper deals with the analytical computation of fixed points of the dynamical system of a single-stage shock absorber valve, which can be applied for the direct computation of its system variables at equilibrium without brute-force numerical integration. The obtained analytical expressions are given for the original dimensional version of the model derived from continuity and motion equations for a realistic valve setup. Furthermore, a large part of the study is devoted to a systematic sensitivity analysis of the model towards crucial parameter changes. Numerical investigation of a potential loss of stability and following nonlinear oscillations is performed in multi-dimensional parameter spaces, which reveals sustained valve vibrations at increased valve mass and applied pretension force. The dynamical behaviour is analysed by phase space orbits, as well as Fourier-transformed valve displacement data to identify dominant frequencies. Chaotic indicators, such as Lyapunov exponents and the Smaller Alignment Index (SALI), are utilized to understand the nature of the oscillatory motion and to distinguish between order and chaos

    Unfolding the procedure of characterizing recorded ultra low frequency, kHZ and MHz electromagetic anomalies prior to the L'Aquila earthquake as pre-seismic ones. Part I

    Get PDF
    Ultra low frequency, kHz and MHz electromagnetic anomalies were recorded prior to the L'Aquila catastrophic earthquake that occurred on April 6, 2009. The main aims of this contribution are: (i) To suggest a procedure for the designation of detected EM anomalies as seismogenic ones. We do not expect to be possible to provide a succinct and solid definition of a pre-seismic EM emission. Instead, we attempt, through a multidisciplinary analysis, to provide elements of a definition. (ii) To link the detected MHz and kHz EM anomalies with equivalent last stages of the L'Aquila earthquake preparation process. (iii) To put forward physically meaningful arguments to support a way of quantifying the time to global failure and the identification of distinguishing features beyond which the evolution towards global failure becomes irreversible. The whole effort is unfolded in two consecutive parts. We clarify we try to specify not only whether or not a single EM anomaly is pre-seismic in itself, but mainly whether a combination of kHz, MHz, and ULF EM anomalies can be characterized as pre-seismic one

    Labyrinth chaos: Revisiting the elegant, chaotic, and hyperchaotic walks

    Get PDF
    Labyrinth chaos was discovered by Otto Rössler and René Thomas in their endeavour to identify the necessary mathematical conditions for the appearance of chaotic and hyperchaotic motion in continuous flows. Here, we celebrate their discovery by considering a single labyrinth walks system and an array of coupled labyrinth chaos systems that exhibit complex, chaotic behaviour, reminiscent of chimera-like states, a peculiar synchronisation phenomenon. We discuss the properties of the single labyrinth walks system and review the ability of coupled labyrinth chaos systems to exhibit chimera-like states due to the unique properties of their space-filling, chaotic trajectories, what amounts to elegant, hyperchaotic walks. Finally, we discuss further implications in relation to the labyrinth walks system by showing that even though it is volume-preserving, it is not force-conservative

    Dynamic tracking with model-based forecasting for the spread of the COVID-19 pandemic

    Get PDF
    In this paper, a susceptible-infected-removed (SIR) model has been used to track the evolution of the spread of COVID-19 in four countries of interest. In particular, the epidemic model, that depends on some basic character- istics, has been applied to model the evolution of the disease in Italy, India, South Korea and Iran. The economic, social and health consequences of the spread of the virus have been cataclysmic. Hence, it is imperative that math- ematical models can be developed and used to compare published datasets with model predictions. The predictions estimated from the presented methodology can be used in both the qualitative and quantitative analysis of the spread. They give an insight into the spread of the virus that the published data alone cannot, by updating them and the model on a daily basis. We show that by doing so, it is possible to detect the early onset of secondary spikes in infections or the development of secondary waves. We considered data from March to August, 2020, when different communities were affected severely and demonstrate predictions depending on the model’s parameters related to the spread of COVID-19 until the end of December, 2020. By comparing the published data with model results, we conclude that in this way, it may be possible to reflect better the success or failure of the adequate measures implemented by governments and authorities to mitigate and control the current pandemic
    • …
    corecore